2.1 Derivatives

$\begin{aligned} \text { The derivative of a function } f \text { at a number } a \text { is: } & f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\ \text { Or, alternatively: } & f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}\end{aligned}$

Geometric Interpretations of the derivative:

1. Slope of a tangent -
2. Rate of Change -

The Derivative as a function -

Given a function f, the derivative of f is the function f^{\prime} defined by

Use the given graph of f to sketch the graph of f.

Ways to denote the derivative of $y=f(x)$

Ways to denote the value of a derivative at a specific number a

If $f(x)=x^{2}-3 x$, find $f^{\prime}(x)$. Then use it to find $f^{\prime}(3)$

Differentiable Functions -

Easy to tell from a graph where a function is NOT differentiable:

